Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lipids Health Dis ; 22(1): 217, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062499

RESUMO

OBJECTIVE: Colorectal cancer (CRC) is a major global health concern, necessitating the identification of biomarkers and molecular subtypes for improved clinical management. This study aims to evaluate the clinical value of adipogenesis-related genes and molecular subtypes in CRC. METHODS: A comprehensive analysis of adipogenesis-related genes in CRC was performed using publicly available datasets (TCGA and GEO database) and bioinformatics tools. Unsupervised cluster analysis was employed to identify the molecular subtypes of CRC, while LASSO regression analysis was utilized to develop a risk prognostic model. The immunogenomic patterns and immunotherapy analysis were used to predict patient response to immunotherapy. Furthermore, qPCR analysis was conducted to confirm the expression of the identified key genes in vitro. RESULTS: Through the analysis of RNAseq data from normal and tumor tissues, we identified 50 differentially expressed genes. Unsupervised cluster analysis identified two subtypes (Cluster A and Cluster B) with significantly different survival outcomes. Cluster A and B displayed differential immune cell compositions and enrichment in specific biological pathways, providing insights into potential therapeutic targets. A risk-scoring model was developed using five ARGs, which successfully classified patients into high and low-risk groups, showing distinct survival outcomes. The model was validated and showed robust predictive performance. High-risk patients exhibited altered immune cell proportions and gene expression patterns compared to low-risk patients. In qPCR validation, four out of the five key genes were consistent with the results of bioinformatics analysis. CONCLUSION: Overall, the findings of our investigation offer valuable understanding regarding the clinical relevance of ARGs and molecular subtypes in CRC, laying the groundwork for improved precision medicine applications and personalized treatment modalities.


Assuntos
Relevância Clínica , Neoplasias Colorretais , Humanos , Adipogenia , Análise por Conglomerados , Biologia Computacional , Neoplasias Colorretais/genética , Prognóstico
2.
Adv Sci (Weinh) ; 10(17): e2205072, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37078797

RESUMO

To date, the improvement of open-circuit voltage (VOC ) offers a breakthrough for the performance of perovskite solar cells (PSCs) toward their theoretical limit. Surface modification through organic ammonium halide salts (e.g., phenethylammonium ions PEA+ and phenmethylammonium ions PMA+ ) is one of the most straightforward strategies to suppress defect density, thereby leading to improved VOC . However, the mechanism underlying the high voltage remains unclear. Here, polar molecular PMA+ is applied at the interface between perovskite and hole transporting layer and a remarkably high VOC of 1.175 V is obtained which corresponds to an increase of over 100 mV in comparison to the control device. It is revealed that the equivalent passivation effect of surface dipole effectively improves the splitting of the hole quasi-Fermi level. Ultimately the combined effect of defect suppression and surface dipole equivalent passivation effect leads to an overall increase in significantly enhanced VOC . The resulted PSCs device reaches an efficiency of up to 24.10%. Contributions are identified here by the surface polar molecules to the high VOC in PSCs. A fundamental mechanism is suggested by use of polar molecules which enables further high voltage, leading ways to highly efficient perovskite-based solar cells.

3.
Radiat Oncol ; 17(1): 185, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36384637

RESUMO

BACKGROUND: Monte Carlo simulation is considered as the most accurate method for dose calculation in radiotherapy. PRIMO is a Monte-Carlo program with a user-friendly graphical interface. MATERIAL AND METHOD: A VitalBeam with 6MV and 6MV flattening filter free (FFF), equipped with the 120 Millennium multileaf collimator was simulated by PRIMO. We adjusted initial energy, energy full width at half maximum (FWHM), focal spot FWHM, and beam divergence to match the measurements. The water tank and ion-chamber were used in the measurement. Percentage depth dose (PDD) and off axis ratio (OAR) were evaluated with gamma passing rates (GPRs) implemented in PRIMO. PDDs were matched at different widths of standard square fields. OARs were matched at five depths. Transmission factor and dose leaf gap (DLG) were simulated. DLG was measured by electronic portal imaging device using a sweeping gap method. RESULT: For the criterion of 2%/2 mm, 1%/2 mm and 1%/1 mm, the GPRs of 6MV PDD were 99.33-100%, 99-100%, and 99-100%, respectively; the GPRs of 6MV FFF PDD were 99.33-100%, 98.99-99.66%, and 97.64-98.99%, respectively; the GPRs of 6MV OAR were 96.4-100%, 90.99-100%, and 85.12-98.62%, respectively; the GPRs of 6MV FFF OAR were 95.15-100%, 89.32-100%, and 87.02-99.74%, respectively. The calculated DLG matched well with the measurement (6MV: 1.36 mm vs. 1.41 mm; 6MV FFF: 1.07 mm vs. 1.03 mm, simulation vs measurement). The transmission factors were similar (6MV: 1.25% vs. 1.32%; 6MV FFF: 0.8% vs. 1.12%, simulation vs measurement). CONCLUSION: The calculated PDD, OAR, DLG and transmission factor were all in good agreement with measurements. PRIMO is an independent (with respect to analytical dose calculation algorithm) and accurate Monte Carlo tool.


Assuntos
Aceleradores de Partículas , Planejamento da Radioterapia Assistida por Computador , Humanos , Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador/métodos , Simulação por Computador , Algoritmos
4.
Plants (Basel) ; 11(17)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36079611

RESUMO

Purple leaf veins and leaf edge cracks comprise the typical leaf phenotype of Brassica juncea; however, the molecular mechanisms and metabolic pathways of the formation of purple leaf veins and leaf edge cracks remain unclear. In this study, transcriptome and metabolome analyses were conducted to explore the regulation pathway of purple leaf vein and leaf edge crack formation based on four mustard samples that showed different leaf colors and degrees of cracking. The results showed genes with higher expression in purple leaf veins were mainly enriched in the flavonoid biosynthesis pathway. Integrating related genes and metabolites showed that the highly expressed genes of ANS (BjuA004031, BjuB014115, BjuB044852, and BjuO009605) and the excessive accumulation of dihydrokaempferol and dihydroquercetin contributed to the purple leaf veins by activating the synthetic pathways of pelargonidin-based anthocyanins and delphinidin-based anthocyanins. Meanwhile, "alpha-farnesene synthase activity" and "glucan endo-1, 3-beta-D-glucosidase activity" related to the adversity were mainly enriched in the serrated and lobed leaves, indicating that the environmental pressure was the dominant factor controlling the change in leaf shape. Overall, these results provided new insights into the regulation pathways for formation of purple leaf veins and leaf edge cracks, which could better accelerate the theoretical research on purple leaf vein color and leaf edge cracks in mustard.

5.
Entropy (Basel) ; 24(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36141072

RESUMO

It is difficult to identify the working conditions of the rotary kilns due to the harsh environment in the kilns. The flame images of the firing zone in the kilns contain a lot of working condition information, but the flame image data sample size is too small to be used to fully extract the key features. In order to solve this problem, a method combining transfer learning and attention mechanism is proposed to extract key features of flame images, in which the deep residual network is used as the backbone network, the coordinate attention module is introduced to capture the position information and channel information on the branch of feature graphs, and the features of flame images obtained are further screened to improve the extraction ability. At the same time, migration learning is performed by the pre-trained ImageNet data set, and feature migration and parameter sharing are realized to cope with the training difficulty of a small sample data size. Moreover, an activation function Mish is introduced to reduce the loss of effective information. The experimental results show that, compared with traditional methods, the working condition recognition accuracy of rotary kilns is improved by about 5% with the proposed method.

6.
Adv Mater ; 34(40): e2206193, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35985840

RESUMO

Perovskite/silicon tandem solar cells are promising avenues for achieving high-performance photovoltaics with low costs. However, the highest certified efficiency of perovskite/silicon tandem devices based on economically matured silicon heterojunction technology (SHJ) with fully textured wafer is only 25.2% due to incompatibility between the limitation of fabrication technology which is not compatible with the production-line silicon wafer. Here, a molecular-level nanotechnology is developed by designing NiOx /2PACz ([2-(9H-carbazol-9-yl) ethyl]phosphonic acid) as an ultrathin hybrid hole transport layer (HTL) above indium tin oxide (ITO) recombination junction, to serve as a vital pivot for achieving a conformal deposition of high-quality perovskite layer on top. The NiOx interlayer facilitates a uniform self-assembly of 2PACz molecules onto the fully textured surface, thus avoiding direct contact between ITO and perovskite top-cell for a minimal shunt loss. As a result of such interfacial engineering, the fully textured perovskite/silicon tandem cells obtain a certified efficiency of 28.84% on a 1.2-cm2 masked area, which is the highest performance to date based on the fully textured, production-line compatible SHJ. This work advances commercially promising photovoltaics with high performance and low costs by adopting a meticulously designed HTL/perovskite interface.

7.
Aging (Albany NY) ; 14(7): 3313-3324, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35422450

RESUMO

BACKGROUND: The MEG3/miR-181b signaling has been implicated in the pathogenesis of several diseases including Crohn's disease. This work aimed to study the correlation between SNPs in MEG3/miR-181b and the severity of anal abscess in patients with Crohn's disease. METHODS: Quantitative real-time PCR was performed to analyze the expression of MEG3 and miR-181b. ELISA was carried out to examine the expression of TNF-α, IL-1ß, IL-6, CRP, SSA, AAT, AAG and HPT in the peripheral blood of patients with Crohn's disease. Luciferase assay was performed to explore the role of miR-181b in the expression of MEG3 and TNF-α. RESULTS: The expression of MEG3 and miR-181b in the peripheral blood of patients with Crohn's disease was remarkably associated with the rs322931 and rs7158663 polymorphisms. rs322931 (C>T) in miR-181b and rs7158663 (G>A) in MEG3 significantly promoted the expression of TNF-α, IL-1ß, IL-6, CRP, SSA, AAT, AAG and HPT. Luciferase assay demonstrated that miR-181b was capable of repressing the expression of MEG3 and TNF-α through binding to their specific binding sites. Moreover, alteration of MEG3 and miR-181b expression also showed a remarkable impact on the MEG3/miR-181b/TNF-α signaling pathway in THP-1 cells. CONCLUSIONS: In conclusion, our study demonstrated that two SNPs, rs322931 (C>T) in miR-181b and rs7158663 (G>A) in MEG3, could aggravate the inflammatory response of anal abscess in patients with Crohn's disease via modulating the MEG3/miR-181b/TNF-α signaling pathway.


Assuntos
Abscesso , Doenças do Ânus , Doença de Crohn , MicroRNAs , RNA Longo não Codificante , Abscesso/genética , Doenças do Ânus/genética , Doença de Crohn/complicações , Doença de Crohn/genética , Humanos , Luciferases , MicroRNAs/genética , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator de Necrose Tumoral alfa/genética
8.
ACS Appl Mater Interfaces ; 14(11): 13431-13439, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35262337

RESUMO

NiOx-based perovskite solar cells (PSCs) have attracted much attention because of their low fabrication temperature, suppressed hysteresis, and superior stability. However, the poor interfacial contacts between NiOx and perovskite layers always limit the progress of PSCs. Here, we applied 2-thiophenemethylamine (TPMA) as charge transport channels at the interface between NiOx and perovskite layers. The introduction of TPMA provides moderate dipole moment pointing to the perovskite side and effectively promotes the charge transportation. Meanwhile, TPMA anchorage also passivates the defect states at the surfaces of both NiOx and MAPbI3, which compensates the voltage loss due to the change in NiOx work function induced by the dipole. Thus, the device performance has been significantly enhanced in both electrochemical properties and power conversion efficiency. Our work has demonstrated a new way of improving current and voltage in the NiOx-based PSCs simultaneously through a moderate interfacial dipole moment toward highly efficient PSCs.

9.
Plants (Basel) ; 10(8)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34451671

RESUMO

GATA transcription factors are a class of transcriptional regulatory proteins that contain a characteristic type-IV zinc finger DNA-binding domain, which play important roles in plant growth and development. The GATA gene family has been characterized in various plant species. However, GATA family genes have not been identified in cucumber. In this study, 26 GATA family genes were identified in cucumber genome, whose physicochemical characteristics, chromosomal distributions, phylogenetic tree, gene structures conserved motifs, cis-regulatory elements in promoters, homologous gene pairs, downstream target genes were analyzed. Tissue expression profiles of cucumber GATA family genes exhibited that 17 GATA genes showed constitutive expression, and some GATA genes showed tissue-specific expression patterns. RNA-seq analysis of green and virescent leaves revealed that seven GATA genes might be involved in the chloroplast development and chlorophyll biosynthesis. Importantly, expression patterns analysis of GATA genes in response to abiotic and biotic stresses indicated that some GATA genes respond to either abiotic stress or biotic stress, some GATA genes such as Csa2G162660, Csa3G017200, Csa3G165640, Csa4G646060, Csa5G622830 and Csa6G312540 were simultaneously functional in resistance to abiotic and biotic stresses. Overall, this study will provide useful information for further analysis of the biological functions of GATA factors in cucumber.

10.
J Appl Clin Med Phys ; 20(9): 86-94, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31538716

RESUMO

In proton therapy, the Bragg peak of a proton beam reportedly deteriorates when passing though heterogeneous structures such as human lungs. Previous studies have used heterogeneous random voxel phantoms, in which soft tissues and air are randomly allotted to render the phantoms the same density as human lungs, for conducting Monte Carlo (MC) simulations. However, measurements of these phantoms are complicated owing to their difficult-to-manufacture shape. In the present study, we used Voronoi tessellation to design a phantom that can be manufactured, and prepared a Voronoi lung phantom for which both measurement and MC calculations are possible. Our aim was to evaluate the effectiveness of this phantom as a new lung phantom for investigating proton beam Bragg peak deterioration. For this purpose, we measured and calculated the percentage depth dose and the distal falloff widths (DFW) passing through the phantom. For the 155 MeV beam, the measured and calculated DFW values with the Voronoi lung phantom were 0.40 and 0.39 cm, respectively. For the 200 MeV beam, the measured and calculated DFW values with the Voronoi lung phantom were both 0.48 cm. Our results indicate that both the measurements and MC calculations exhibited high reproducibility with plastinated lung sample from human body in previous studies. We found that better results were obtained using the Voronoi lung phantom than using other previous phantoms. The designed phantom may contribute significantly to the improvement of measurement precision. This study suggests that the Voronoi lung phantom is useful for simulating the effects of the heterogeneous structure of lungs on proton beam deterioration.


Assuntos
Algoritmos , Pulmão/efeitos da radiação , Método de Monte Carlo , Imagens de Fantasmas , Impressão Tridimensional/instrumentação , Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Simulação por Computador , Humanos , Dosagem Radioterapêutica
11.
Dalton Trans ; 46(32): 10685-10693, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28518191

RESUMO

(LaTiO2N)1-x(LaCrO3)x continuous solid solutions with an orthorhombic-phase ABX3 perovskite structure and with varied LaCrO3 contents (0 ≤ x ≤ 1) were synthesized by a polymerized complex method followed by a post-treatment process of nitridation for the first time. Visible-light-driven photocatalytic H2-evolution activities of the solid solutions gradually increased with the increase of x from 0.0 to 0.3, and then sharply decreased with the further increase of x from 0.3 to 1.0. With the increase of x, on the one hand, the narrowed bandgaps of solid solutions would enhance the generation of charge carriers and the increased lattice distortion of solid solutions could promote the separation and migration of charge carriers, thus mainly contributing to the improvement of photocatalytic activities; on the other hand, the lowered CBMs of solid solutions would reduce the driving force for reducing H2O to H2 and the decreased surface areas of solid solutions would weaken the adsorption of reactants and reduce the reactive sites, thereby resulting in the deterioration of photocatalytic activities.

12.
Nanotechnology ; 28(16): 164002, 2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28266922

RESUMO

A series of WO3/g-C3N4 composites with different WO3 contents were prepared via a facile one-pot pyrolysis method, and showed notably enhanced visible-light-driven photocatalytic H2-evolution activities, with the highest rate of 400 µmol h-1 gcat-1 that was 15.0 times of that for pristine g-C3N4. Contents and sizes of WO3 crystallites in the composites were easily adjusted by changing the molar ratios of (NH4)2WS4 to C3H6N6 in the feed reagents, thereby successfully optimizing the Z-scheme system constructed by WO3 and g-C3N4 and thus effectively reducing the recombination of photogenerated charge carriers in g-C3N4. Moreover, pore volumes and surface areas of the composites were gradually enlarged by introducing WO3 into g-C3N4 via the one-pot preparation strategy, therefore promoting the redox reactions to evolve H2. This work presented an effective route to simultaneously optimize the phase compositions and textural structures of photocatalysts for enhanced H2 evolution.

13.
Chem Asian J ; 12(8): 882-889, 2017 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-28220991

RESUMO

Ag0.5 La0.5 TiO3 with an ABO3 perovskite structure was synthesized by a newly developed ion-exchange method. Molten Ag2 SO4 instead of traditional molten AgNO3 was used as Ag+ source in view of its high decomposition temperature (1052 °C), thereby guaranteeing the complete substitution of Ag+ for Na+ in Na0.5 La0.5 TiO3 with a stable ABO3 perovskite structure at a high ion-exchange temperature (700 °C). Under full-arc irradiation, the O2 -evolution activity of Ag0.5 La0.5 TiO3 was about 1.6 times that of Na0.5 La0.5 TiO3 due to the optimized electronic band structures and local lattice structures. On the one hand, the substitution of Ag+ for Na+ elevated the VBM and thus narrowed the band gap from 3.19 to 2.83 eV, thereby extending the light-response range and, accordingly, enhancing the photoexcitation to generate more charge carriers. On the other hand, the substitution of Ag+ for Na+ induced a lattice distortion of the ABO3 perovskite structure, thereby promoting the separation and migration of charge carriers. Moreover, under visible-light irradiation, Ag0.5 La0.5 TiO3 displayed notable O2 evolution whereas Na0.5 La0.5 TiO3 showed little O2 evolution, thus demonstrating that the substitution of Ag+ for Na+ enabled the use of visible light to evolve O2 photocatalytically. This work presents an effective route to explore novel Ag-based photocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...